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Abstract

The concept of uncertainty plays an important role in the design of practical mechanical system. The most common

methods for solving uncertainty problems are to model the parameters as a random vector. A natural way to handle the

randomness is to admit that a given probability density function represents the uncertainty distribution. However, the

drawback of this approach is that the probability distribution is difficult to obtain. In this paper, we use the non-

probabilistic convex model to deal with the uncertain parameters in which there is no need for probability density

functions. Using the convex model theory, a new method to optimize the dynamic response of mechanical system with

uncertain parameters is derived. Because the uncertain parameters can be selected as the optimization parameters, the

present method can provide more information about the optimization results than those obtained by the deterministic

optimization. The present method is implemented for a torsional vibration system. The numerical results show that the

method is effective.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In engineering design it is important to optimize response quantities such as the displacement, stress,
vibration frequencies and mode shapes against a given set of design parameters. The deterministic
optimization [1–5] of structural behavior has been well developed for specified parameters and loading
conditions. However, the design parameters may be uncertain because of complexity of structures,
manufacture errors, inaccuracy in measurement, etc. If the design parameters are changed the design will
no longer be optimal and may be unstable in response to these changes. Therefore, the concept of uncertainty
plays an important role in the investigation of various engineering problems.

The most common approach to study the problems of uncertainty is to model the parameters as random
variables or fields. Under the circumstances, all information about the parameters is provided by the joint
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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probability density function (or distribution function) of the parameters. But the probabilistic modeling is not
the only way to describe the uncertainty, and also uncertainty is not equal to randomness. Indeed, the
probabilistic approaches cannot give reliable results unless sufficient experimental data are available to
validate the assumptions about the joint probability densities of the random variables or functions involved.

Despite the success of the probabilistic model, one may recognize that uncertainties in engineering can be
modeled on the basis of alternative, non-probabilistic conceptual frameworks. These uncertainties in
engineering are usually bounded from above and below, and can be considered to be defined within envelope
bounds. One of the mathematical models used for uncertainties are interval sets. In the interval models, all
parameters with uncertainties are assumed to be bounded in which the magnitude of uncertain parameters are
only required, not necessarily knowing the probabilistic distribution densities. Moore [6] and Alefeld and
Herzberger [7] have done the pioneering work. The linear interval equations and nonlinear interval equations
have been resolved. Because of the complexity of the interval algorithm, it is difficult to deal with practical
engineering problems. Recently, Zhang et al. [8,9] have used the interval finite element method to deal with the
eigenvalues and dynamic response of uncertain closed-loop system. Hansen in his book [10] discussed the
global optimization using interval analysis. Rao and Cao [11] presented the optimum design of uncertain
mechanical system using interval analysis combined with truncation procedure for the prediction of system
response.

Another non-probabilistic model for uncertain parameters in engineering is convex (ellipsoidal) sets. It was
assumed that the parameters fall into the multidimensional ellipsoid or solid ball. Convex models have been
used for modeling uncertain phenomena in a wide range of engineering applications. For instance, Ben-Haim
and Elishakoff [12] and Lindberg [13] used the convex model to study the dynamic response and failure of
structures with pulse loads. Shi and Gao [14] used the convex model to solve the robustness of control system.
Recently, convex (ellipsoidal or interval) sets have been used for modeling uncertain phenomena in a wide
range of engineering applications by Elishakoff et al. [15,16] and Pantelides and Ganzerli [17]. Based on
convex information-gap models of uncertainty, Ben-Haim studied robust reliability, a new non-probabilistic
theory of reliability, for mechanical systems [18] and Info-Gap decision theory for decision-making [19]. Hall
et al. [20,21] investigated the estimation of the convex set in the problems of robot vision and medical imaging.

The implementation of convex model theory in optimal structural design has not been widely investigated.
Natke and Soong [22] considered topological structural optimization in the presence of dynamic loading.
Ganzerli and Pantelides [23] discussed the optimal design of structures that are affected by uncertainties
present in the loads applied to the structure, and by uncertainties affecting the internal resistance of the
structural members.

However, the optimization problems described in the aforementioned studies except [19] are limited to the
cases in which only the design parameters are uncertain. In some cases, the design variables have some
tolerances derived from manufacture errors, inaccuracy in measurement or some other reasons. Thus, it is
possible that the optimal points of design variables cannot be obtained precisely and then the values of the
objective functions are unreliable. In this paper, the tolerances on the design variables (or unknown
parameters) as well as the uncertainties of the pre-assigned parameters (or design data) are to be taken into
account for optimization. In other words, we treat the parameters with uncertainties and the design
variables with tolerances indiscriminately. Using the convex model theory and Taylor expansion, the
optimization problem of a mechanical system with uncertain parameters can be transferred into the
approximate deterministic optimization one. Ben-Haim in his book [19] discussed the manufacturing process
control. Rigorously to say, the subject the author addressed is the robustness optimization problem. Our
present work somewhat relate to that subject. However, in the book [19] the mathematical model of the
process is the classical MinMax model and the evaluation of the robustness function is complicated. The
innovative idea of the approach presented in this paper is that we reformulate the uncertain optimization
problem as an approximated deterministic one, moreover, because the nominal values and the uncertainties of
the uncertain parameters are to be selected as the design variables, we can not only get the optimal points but
also determine the manufacture errors of design variables in advance to obtain the upper and lower bounds of
the objective functions, which the literature addressed little. The present method is applied to a torsional
vibration system and the optimization results are compared with those obtained by the deterministic
optimization method.
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The structure of this paper is that we will start with a brief introduction to convex model, and then discuss
the optimization using the convex model. The optimization problems with uncertain parameters can be
transformed into the approximate deterministic optimization one. The present method is implemented for a
torsional vibration system and the optimization results are compared with those obtained by the deterministic
optimization method.

2. A brief introduction to convex model

The method of describing the uncertainties by convex set is called convex model, which does not need
precise information and is used broadly. If the uncertain parameter a is confined to a convex set O, i.e. a 2 O,
where the elements of the vector a are values or functions, then O is defined as the convex model of the
uncertain parameter a. Here, we follow the approach due to Ben-Haim and Elishakoff [12] and assume that
uncertain parameters belong to a bounded quadratic convex set

OðW ; yÞ ¼ fa : a 2 Rn; ða� a0Þ
TWða� a0Þpy2g (1)

where a0 is the nominal vector of the uncertain parameter vector a, W is the symmetric positive weighted
matrix, y is a given positive real constant and is called the radius of the ellipsoid. Here we consider that the
uncertain parameters are on the correlated, so the eigen-structure of W is chosen so as to reflect the uncertain
information. The convex model means that all the uncertain parameters a are constrained into the n-
dimension ellipsoid. A convex model depends on its real parameter vector a, nominal vector a0 and weight
matrix W. Since W is a positive definite matrix, it is diagonalized by an orthogonal matrix H whose column
vectors are the eigenvectors of W. That is

W ¼ HKHT; HTH ¼ I (2)

in which, K ¼ diagðliÞ is the diagonal matrix of li40; i ¼ 1; 2; . . . ; n, eigenvalues of W. I is the identity matrix.
Then Eq. (1) can be transferred into the following ellipsoidal equation:

OðW; yÞ ¼ b : b 2 Rn;
Xn

i¼1

ðbi � bi0Þ
2

e2i
py2

( )
(3)

where

e2i ¼
1

li

; i ¼ 1; 2; . . . ; n

b ¼ HTa; b0 ¼ HTa0 (4)

In practical engineering numerical analysis, Eq. (3) is far more convenient than Eq. (1).

3. Optimization using convex model

In general, a constrained optimization problem can be stated as follows:

min f ðaÞ

s:t:
piðaÞp0; i ¼ 1; 2; . . . ;m

qjðaÞ ¼ 0; j ¼ 1; 2; . . . ; l

(
(5)

where a is the set of design variables, f ðaÞ is the objective function, and piðaÞ and qjðaÞ are the constraints,
respectively.

However, all the design parameters are treated as deterministic quantities in few cases. In some cases, the
design variables are assumed to be uncertain or have some tolerances. If the uncertain parameters of
mechanical system are studied by convex model, i.e. aC 2 O, the objective function we shall minimize is an
interval. The constraint functions are intervals, too. Thus, the optimization problem for mechanical system
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with uncertain parameters using convex model can be expressed as

min f ðaCÞ

s:t:
piða

CÞp0; i ¼ 1; 2; . . . ;m

qjða
CÞ ¼ 0; j ¼ 1; 2; . . . ; l

8<
: (6)

in which, aC ¼ ðaC
1 ; a

C
2 ; . . . ; a

C
n Þ is the uncertain parameter vector of the system constraint into the convex set

defined by Eq. (1), f ðaCÞ is the interval objective function, and piða
CÞp0 and qjða

CÞ ¼ 0 are the interval
constraint conditions, respectively.

It should be noted that minimizing the f ðaCÞ means minimize the whole interval, not the length of the
interval. However, it is difficult to solve Eq. (6) directly [10]. In order to simplify the uncertain optimization
problems, we transform it into equivalent deterministic one. To this end, using the Taylor expansion to expand
f ðaCÞ about the nominal vector a0 of the uncertain vector aC and neglecting the higher-order terms, one has1

f ðaCÞ � f ða0Þ þ
Xn

i¼1

qf ða0Þ

qai

ðai � ai0Þ

¼ f ða0Þ þ ða
C � a0Þ

TA (7)

where ða� a0Þ
T is a row vector; A is a column vector

A ¼
qf ða0Þ

qa

¼
qf ða0Þ

qa1

qf ða0Þ

qa2
� � �

qf ða0Þ

qan

� �T
(8)

When the uncertain parameters aC vary within the n-dimension ellipsoid described by Eq. (1), the approximate
extremums of the objective function can be determined as

f ðaCÞmax ¼ maxðf ða0Þ þ ða� a0Þ
TAÞ

f ðaCÞmin ¼ minðf ða0Þ þ ða� a0Þ
TAÞ (9)

According to the convex model theory, the extremums of Eq. (7) will occur on the boundary of the ellipsoid,
OðW; yÞ, described by Eq. (1) [24]. By means of the Lagrange multiplier method, the above equation can be
rewritten as

f ðaCÞmax ¼ f ða0Þ þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðeif ;iÞ
2

s

f ðaCÞmin ¼ f ða0Þ � y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðeif ;iÞ
2

s
(10)

where f ;i ¼ ðH
Tðqf ða0Þ=qaÞÞi is the ith element of the column vector HTðqf ða0Þ=qaÞ.

From the above discussion, we can see that the objective function can be treated as the following interval:

f ðaCÞ ¼ f ða0Þ � y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðeif ;iÞ
2

s
; f ða0Þ þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðeif ;iÞ
2

s" #
(11)

Similarly, the intervals of the constraints can be obtained as

piða
CÞ ¼ piða0Þ � y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

ðekpi;kÞ
2

s
; piða0Þ þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

ðekpi;kÞ
2

s" #
1Here we limit to the case where the uncertainties of the parameters are small.
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qjða
CÞ ¼ qjða0Þ � y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

ðekqj;kÞ
2

s
; qjða0Þ þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

ðekqj;kÞ
2

s" #

ði ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; lÞ (12)

where pi;k ¼ ðH
Tðqpiða0Þ=qaÞÞk is the kth element of the column vector HTðqpiða0Þ=qaÞ; qj;k ¼

ðHTðqqjða0Þ=qaÞÞk is the kth element of the column vector HTðqqjða0Þ=qaÞ, respectively.
Then the optimization problem with uncertain parameters (Eq. (6)) can be transformed into the equivalent

deterministic optimization one as follows:

min f ða0Þ þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðeif ;iÞ
2

s

s:t:

piða0Þ þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðeipi;kÞ
2

s
p0 ði ¼ 1; 2; . . . ;mÞ

qjða0Þ ¼ 0 ðj ¼ 1; 2; . . . ; lÞ

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðeiqj;kÞ
2

s
¼ 0 ðj ¼ 1; 2; . . . ; lÞ

8>>>>>>>>><
>>>>>>>>>:

(13)
4. Numerical examples: design for linear torsional vibration system

Consider the linear torsional vibration system with n degrees of freedom in Fig. 1. Suppose the excitation
torque applied to each disk is

ME
i ðtÞ ¼Mic cosotþMis sinot (14)
EMi (t)
EMn (t)

ki

ci

ki+1

ci+1

Ecn
Eci

Ec1

EM1  (t)

k1 k2

c2

kn

cn

kn+1

c1 cn+1

Fig. 1. Linear torsional vibration system with n degrees of freedom.
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The goal of the deterministic optimization is to determine design variables I i, ki, ci, cE
i so that the sum of the

amplitude
Pn

i¼1jxiðtÞj takes minimum. The design variables can be rewritten as an N-dimensional vector

a ¼ fa1; a2; . . . ; aNg
T ¼ fI1; . . . ; In; k1; . . . ; knþ1; c1; . . . ; cnþ1; c

E
1 ; . . . ; c

E
n g

T

where I i is the inertia moment, ki is the torsional stiffness, ci and cE
i are the internal and external damping

coefficients, respectively.
The deterministic optimization problem is given by

min f ðaÞ ¼
Xn

i¼1

jxiðaÞj

s:t:
�y2 þ

Pm
i¼1

½HTða� a0Þ�
2
i

e2i
p0

jxjðaÞj � xA
j p0 ðj ¼ 1; 2; . . . ; nÞ

8>><
>>: (15)

where jxiðaÞj denote the displacement amplitudes xiðaÞ, and xA
j the corresponding permissible deviations.

If at the beginning of design, the design variables are considered to have some uncertainties/tolerances and
we use the convex model to deal with the uncertainties/tolerances, then the present optimization for the
torsional vibration system is given as follows:

min
Xn

i¼1

jxiða0Þj þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1

ðekxi;kÞ
2

vuut
0
@

1
A

s:t:

�y2 þ
Pm
i¼1

½HTða� a0Þ�
2
i

e2i
p0 ði ¼ 1; 2; . . . ;mÞ

jxjða0Þj þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1

ðekxi;kÞ
2

s
� xA

j p0 ðj ¼ 1; 2; . . . ; nÞ

8>>>>><
>>>>>:

(16)

The goal of the present optimization is to determine the nominal values and uncertainties of design variables a
so that the sum of the amplitude

Pn
i jxiðtÞj takes minimum and the interval can be derived.

The vibration equation of the linear torsional vibration system as shown in Fig. 1 is

MðI iÞ €xðtÞ þ Cðci; c
E
i Þ _xðtÞ þ KðkiÞxðtÞ ¼ Fc cosotþ Fs sinot (17)

where Fc ¼MT
ficg, Fs ¼MT

fisg, MðI iÞ is the mass matrix, Cðci; cE
i Þ the damping matrix and KðkiÞ the stiffness

matrix, respectively.
The solution of the equation is

xðaÞ ¼ fxiðaÞg ¼ GðaÞðFc � iFsÞ (18)

where the complex frequency response matrix of the system GðaÞ is given by

GðaÞ ¼ ½�MðI iÞo2 þ ioCðci; c
E
i Þ þ KðkiÞ�

�1 (19)

To simplify the analysis, we only consider the design optimization for the disk I1. Disk I1 is excited by
ME

1 ¼M1c cosot. The matrices for the system are given in Appendix.
Case 1: The parameters of I1, k1 and c1 are deterministic, the design variables, I2, k2 and c2 have the

specified uncertainties/tolerances, Disk I1 is excited by ME
1 ¼M1c cosot.

Assume that the following parameters can be given in advance: I1;0 ¼ 500 kgm2, k1;0 ¼ 5000 kgm rad�1,
c1;0 ¼ 10, DI1 ¼ 0, Dk1 ¼ 0, Dc1 ¼ 0, in which I1;0, k1;0, c1;0, and DI1, Dk1, Dc1 are the nominal values and
uncertain parts of I1, c1 and k1, respectively. In this case we suppose the uncertainties of the design variables
are specified in advance, that is DI2 ¼ 0:2 kgm2, Dk2 ¼ 1:0 kgm rad�1 and Dc2 ¼ 0:1. The present
optimization is to minimize the displacement amplitude of the disk I1 and give the interval in which the
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value of the objective function lies. There are three optimization parameters

I2;0; k2;0; c2;0

where I2;0, k2;0 and c2;0 are the nominal values of I2, k2 and c2, respectively. Using Lagrange optimal
algorithm, the approximate deterministic optimization can be solved. The results of the present method are
given in Table 1. For comparison, the results of the deterministic optimization are also listed in Table 1. From
Table 1, it can be seen that the displacement amplitude of the disk I1 with the deterministic optimization is
2:9877E� 02, while the corresponding results with the present method is an interval ½2:8932E� 02; 3:4009E�
02� and its midpoint is 3:1471E� 02.

Case 2: The parameters of I1, k1 and c1 are deterministic, and I2, k2 and c2 have unknown uncertainties/
tolerances. Disk I1 is excited by ME

1 ¼M1c cosot.
Assume that the following parameters can be given in advance: I1;0 ¼ 500 kgm2, k1;0 ¼ 5000 kgm rad�1,

c1;0 ¼ 10, DI1 ¼ 0, Dk1 ¼ 0, Dc1 ¼ 0, in which I1;0, k1;0, c1;0, and DI1, Dk1, Dc1 are the nominal values and
uncertain parts of I1, c1 and k1, respectively. The present optimization is to minimize the displacement
amplitude of the disk I1 and give the interval in which the value of the objective function lies. There are six
optimization parameters

I2;0; k2;0; c2;0; DI2; Dk2; Dc2

where I2;0, k2;0, c2;0 and DI2, Dk2, Dc2 are the nominal values and uncertain parts of I2, k2 and c2, respectively.
Using Lagrange optimal algorithm, the approximate deterministic optimization can be solved. The results

of the present method are given in Table 2. For comparison, the results of the deterministic optimization are
also listed in Table 2. From Table 2, it can be seen that the displacement amplitude of the disk I1 with the
deterministic optimization is 2:9877E� 02, while the corresponding results with the present method is an
interval ½2:9536E� 02; 3:3245E� 02� and its midpoint is 3:1391E� 02.

Case 3: The parameters of I1, I2, c1, c2, k1 and k2 and uncertain.
There are 12 optimization parameters

I1;0; k1;0; c1;0; I2;0; k2;0; c2;0; DI1; Dk1; Dc1; DI2; Dk2; Dc2

where I1;0, k1;0, c1;0 and DI1, Dk1, Dc1 are the nominal values and uncertain parts of I1, k1 and c1, respectively.
Using Lagrange optimal algorithm, the approximate deterministic optimization can be solved. The results

of the present method are given in Table 3. For comparison, the results of the deterministic optimization are
also listed in Table 3.

From Tables 1 and 2, it can be seen that in Case 2 we take the uncertainties/tolerances of the design
variables as the optimization parameters, so the interval value of the objective function obtained by Case 2 is
sharper than that obtained by Case 1. At first glance, maybe this is contradict to the intuition that the more
uncertainty there is in the input space, the more spread of possible output values in the output space. But in
our study, in Case 2 the uncertain parts of the parameters are selected as the optimization objects, which is
pre-assigned in Case 1.

Through the above three cases, we can see that if we control the manufacturing precision of the design
variables within their uncertainties, we can obtain the range of the objective function, while it cannot be
Table 1

Comparison of results of deterministic optimization and the present method with three parameters, for Case 1 (M1c ¼ 100kgm,

o ¼ 4 rad s�1)

Initial value Deterministic optimization values The present method

I2;0 10.0000 10.3751 10.7690

k2;0 300.0000 301.6022 300.5018

c2;0 10.0000 12.3730 14.7180

DI2 (specified) 0.2000 0 0.2000

Dk2 (specified) 1.0000 0 1.0000

Dc2 (specified) 0.1000 0 0.1000

minjx1ðaÞj 2:9877E� 02 ½2:8932E� 02; 3:4009E� 02�
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Table 2

Comparison of results of deterministic optimization and the present method with six parameters, for Case 2 (M1c ¼ 100kgm,

o ¼ 4 rad s�1)

Initial value Deterministic optimization values The present method

I2;0 10.0000 10.3751 10.7872

k2;0 300.0000 301.6022 305.7537

c2;0 10.0000 12.3730 13.1139

DI2 0.2000 0 0.1880

Dk2 1.0000 0 0.9021

Dc2 0.1000 0 0.0900

minjx1ðaÞj 2:9877E� 02 ½2:9536E� 02; 3:3245E� 02�

Table 3

Comparison of results of deterministic optimization and the present method with 12 parameters, for Case 3 (M1c ¼ 100kgm,

o ¼ 4 rad s�1)

Initial values Deterministic optimization values The present method

I1;0 300.0000 450.0000 450.0000

I2;0 15.0000 21.3760 25.8263

k1;0 5000.0000 5000.0000 5075.6255

k2;0 1000.0000 1001.1087 1015.0007

c1;0 100.0000 100.0658 124.9472

c2;0 100.0000 52.2269 59.0210

DI1 0.2000 0 0.7054

DI2 0.2000 0 1.0235

Dk1 1.0000 0 2.7366

Dk2 1.0000 0 6.0913

Dc1 0.1000 0 0.1578

Dc2 0.1000 0 0.1297

minjx1ðaÞj 3:6487E� 02 ½3:6421E� 02; 3:6572E� 02�

X.M. Zhang, H. Ding / Journal of Sound and Vibration 318 (2008) 406–415 413
obtained in the deterministic optimization. Using the present optimization method, we can find not only the
optimum points but also the interval in which the objective function value lies.
5. Conclusion

In this paper, a new optimization method is proposed for dynamic response of mechanical system with
uncertain parameters using convex method. The optimization problem for the uncertain system is transformed
into the approximate deterministic optimization one, so we can use the standard algorithm for nonlinear
optimization to solve the optimization problem for the uncertain system. Using the present method, more
information for the optimal mechanical system can be obtained, such as how the optimization results change if
the uncertainties of parameters are imposed on the system. Because the present method is based on the first-
order Taylor expansion, the application of the method is limited to the cases where the uncertainties of the
parameters are small. If the uncertainties of the parameters are fairly large, in order to obtain higher
computing accuracy, the second-order Taylor expansion should be considered.
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Appendix

Fc ¼ fMicg
T ¼

M1c

0

� �
(A.20)

Fs ¼ fMisg
T ¼

0

0

� �
(A.21)

MðI iÞ ¼
I1 0

0 I2

" #
(A.22)

Cðci; c
E
i Þ ¼

c1 þ c2 �c2

�c2 c2

" #
(A.23)

KðkiÞ ¼
k1 þ k2 �k2

�k2 k2

" #
(A.24)

GðaÞ ¼ ½�MðI iÞo2 þ ioCðci; c
E
i Þ þ KðkiÞ�

�1

¼
�I1o2 þ k1 þ k2 þ ioðc1 þ c2Þ �k2 � ioc2

�k2 � ioc2 k2 � I2o2 þ ioc2

" #�1
(A.25)

fxðaÞg ¼
x1ðaÞ

x2ðaÞ

( )
¼ GðaÞ

M1cðaÞ

0

� �
(A.26)

and the displacement response for the first disk is

x1ðaÞ ¼
Aþ iB

C2 þD2
(A.27)

where

A ¼M1c k1k2
2 � 2o2I2k1k2 � o2I1k

2
2 � o2I2k

2
2 þ 2o4I1I2k2

�
þo4I22k1 þ o4I22k2 � o6I1I22 þ o2k1c

2
2 � o4I1c

2
2 � o4I2c22

�
(A.28)

B ¼M1cð�ok2
2c1 þ 2o3I2k2c1 � o3c1c22 � o5I22c1 � o5I22c2Þ (A.29)

C ¼ k1k2 � o2I2k1 � o2I2k2 � o2I1k2 þ o4I1I2 � o2c1c2 (A.30)

D ¼ ok1c2 � o3I1c2 þ ok2c1 � o3I2c1 � o3I2c2 (A.31)

The norm of x1ðaÞ is

jx1ðaÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
C2 þD2

(A.32)
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